Review

Engineering microscale topographies to control the cell–substrate interface

Mehdi Nikkhah, Faramarz Edalati, Sam Manoucheri, Ali Khademhosseinii

1 Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
2 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA

ARTICLE INFO

Article history:
Received 22 March 2012
Accepted 27 March 2012
Available online 21 April 2012

Keywords:
Surface topography
Microfabrication
Adhesion
Migration
Mechanobiology
Tissue engineering

ABSTRACT

Cells in their in vivo microenvironment constantly encounter and respond to a multitude of signals. While the role of biochemical signals has long been appreciated, the importance of biophysical signals has only recently been investigated. Biophysical cues are presented in different forms including topography and mechanical stiffness imparted by the extracellular matrix and adjoining cells. Microfabrication technologies have allowed for the generation of biomaterials with microscale topographies to study the effect of biophysical cues on cellular function at the cell–substrate interface. Topographies of different geometries and with varying microscale dimensions have been used to better understand cell adhesion, migration, and differentiation at the cellular and sub-cellular scales. Furthermore, quantification of cell-generated forces has been illustrated with micropillar topographies to shed light on the process of mechanotransduction. In this review, we highlight recent advances made in these areas and how they have been utilized for neural, cardiac, and musculoskeletal tissue engineering application.

1. Introduction

The microenvironment in which cells reside in vivo exhibits a complex milieu of signals which play an essential role in a diverse set of cellular processes [1]. Cells are capable of sensing and responding to a plethora of signals, consisting of biochemical and biophysical cues, over a wide range of length scales [2]. Many of these cues are provided by the extracellular matrix (ECM), which acts as a cellular scaffold and is the primary extracellular component of tissues [3]. In vivo, the ECM, through its structure and molecular composition, presents a variety of geometrically-defined, three-dimensional (3D) physical cues on the order of micron and sub-micron scale, known as topographies [4–6]. The ECM is composed of proteins and polysaccharides with structural widths and lengths in the nano- and micrometer range, respectively [7]. These individual ECM components are folded and bent to form secondary supramolecular structures—held by secondary and disulfide bonds, and hydrophobic interactions—with micron-size topographies [8]. The intestinal mucosa is a case in point illustrating the wide range of topographical length scales present in vivo. This tissue consists of finger-like projections known as villi which are epithelial folds 400–500 μm in dimension [9,10]. Each villi is further folded into smaller microvilli and at the base of each villi are epithelial invaginations known as intestinal crypts that are 100–200 μm in dimension. The intestinal mucosa is supported by a basement membrane containing surface pores 1–5 μm in diameter and 50 nm-thick collagen fibers. The interaction and response of cells with these topographies are mediated through a phenomenon called contact guidance [11]. Contact guidance is known to affect cellular behaviors such as adhesion, morphology, migration, and differentiation [12–16]. Another type of physical cue displayed by the ECM is mechanical stiffness through which, similar to topography, a diverse set of cellular functions can be modulated [17,18].

The effect of physical stimuli on cellular function has long been recognized [11,17–21]. Through a process known as mechanotransduction, various physical cues in a cell’s surrounding environment are integrated and converted to biochemical, intracellular signaling responses that lead to changes in cell function [17,19]. At the nanometer length scale, the topography of the ECM affects sub-cellular behaviors such as the organization of the cell adhesion molecule receptors, whereas at the micron level, cellular and supracellular characteristics such as cell morphology and
migration, and tissue organization are influenced. Hence, the ECM conveys biophysical signals over a broad range of length scales from nano- to micrometers [18]. Despite the significance of these processes, the underlying mechanism of how physical stimuli contribute to the regulation of cellular behaviors has yet to be fully understood.

By understanding the manner in which cells interact with their physical environment, it may be possible to control cellular behavior through the fabrication of substrates with unique physical properties. In pursuit of understanding these interactions, nano- and microfabrication technologies are being widely used to construct substrates of differing topographies. In this regard, nanotechnology has been used to create sub-100 nm topographical features to investigate the supramolecular events occurring at the cell–substrate junction [22]. In contrast, microfabrication techniques have gained notoriety for their ability to affect supracellular behavior and to develop inexpensive, scalable features with high precision and fidelity [23]. Therefore, many biologists and bioengineers have added microfabrication techniques, used to generate microtopographies, to their armamentarium to study specific cell behaviors [24–28]. The capability of microfabrication techniques in generating various topographical stimuli mimicking native cell microenvironment’s architecture has provided valuable insight to scientists about the relationship between the cell–substrate interaction and cellular processes such as adhesion, migration, and differentiation across different tissues (Fig. 1) [1,29]. In addition, these techniques have allowed for the design of platforms invaluable to studying cell biomechanics at the micrometer length scales and its importance in tissue organization and development.

In this review, recent developments toward understanding the effect of topographical cues on cellular behaviors are highlighted. Of particular interest in this review are microscale topographies with dimensions that are greater than 1 μm. Various microfabrication technologies used to develop topographical features for the study of cell–substrate interactions are discussed. Specifically, we will focus on the effect of these interactions on cell adhesion, morphology, migration, and differentiation (Table 1). Consequently, the application of microscale topographies to study cellular forces and mechanics is reviewed. Furthermore, we will highlight the use of these topographies in constructing substrates for nerve, cardiac, and musculoskeletal tissue engineering applications. Finally, future directions and challenges in using topography to gain a deeper understanding of cellular processes are discussed.

2. Fabrication techniques

Various fabrication techniques are used to produce ordered or randomly structured microtopographies. Randomly structured microtopographies can be generated with classical processing methods such as sandblasting and grit-blasting [30–33], polishing, grinding [34], abrasion [35], plasma spraying, acid etching, and machining [36,37]. In contrast, microfabrication can produce surfaces with ordered structures such as grooves, pillars, pits, and wells. The foundations of microfabrication techniques arose from the semiconductor and microelectronics industries where it was initially used to fabricate integrated circuits of microprocessors at micrometer length scales. In biology, many of the components of a cell’s environment are on the order of nano- to micrometer scale. For instance, the width of a single collagen fiber is 0.5–3 μm and the length of cells range from 1 to 100 μm. Thus, it has become clear that a greater degree of control over a cell’s behavior is needed at these length scales. Over the past two decades, microfabrication technologies have been instrumental in enabling more precise manipulation of cells and hence, have come to be increasingly applied to biology, medicine, and biomedical engineering [38]. The introduction of microfabrication to biological experiments has

Fig. 1. Mimicking in vivo embryo, neural, and cardiac tissue organizations via fabricated microtopographies in in vitro platforms [35,141,229–232]. Scale bars, 20 μm (bottom left), 500 μm (bottom middle, bottom right). Adapted with permission from BioMed Central: [BMC Pharmacology]. Adapted with permission from Elsevier: [Biomaterials], copyright (2007), [Brain Research], copyright (1968), [Biomaterials], copyright (2012), [Cell], copyright (1996), [Biomaterials], copyright (2010).
Summary of selected studies on the effects of microscale topographies on cell adhesion and morphology.

<table>
<thead>
<tr>
<th>Substrate type</th>
<th>Cell type</th>
<th>Substrate material</th>
<th>Feature size</th>
<th>Significant findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grooves</td>
<td>Embryonic Xenopus spinal cord neurons, rat hippocampal neurons</td>
<td>Quartz</td>
<td>1, 2, 4 µm width 14 nm–1.1 µm depth</td>
<td>Xenopus cell alignment along the grooves of all sizes; hippocampal cell alignment along wide and deep grooves [76].</td>
</tr>
<tr>
<td></td>
<td>Human gingival fibroblasts</td>
<td>Ti-coated silicon</td>
<td>15 µm width 3 µm depth</td>
<td>Primary elongation of microtubules along the grooves followed by elongation of actin fibers and focal contacts [78].</td>
</tr>
<tr>
<td></td>
<td>Human gingival fibroblasts</td>
<td>Ti-coated silicon</td>
<td>0.5–15 µm width 0.5, 3 µm depth</td>
<td>Alignment of microtubules and actin fibers along the grooves [79].</td>
</tr>
<tr>
<td></td>
<td>Human osteoblasts</td>
<td>Ti- and HA-coated silicon</td>
<td>4–38 µm width 2, 4, 10 µm depth</td>
<td>Improved alignment on feature dimensions close to the cell size. Similar contact guidance on Ti and HA substrates [80].</td>
</tr>
<tr>
<td></td>
<td>Primary human foreskin fibroblasts, keratinocytes</td>
<td>Ti-coated silicon, Ti-coated epoxy resin (Araldite®)</td>
<td>1–20 µm width 0.4–2 µm depth</td>
<td>Fibroblasts were oriented while keratinocytes failed to orient along the grooves. Adhesion of cells to the substrate could be improved through coating the surface with Ti [81].</td>
</tr>
<tr>
<td></td>
<td>Osteoblasts, myoblasts</td>
<td>HA-coated silicon</td>
<td>8, 24 µm width 2–10 µm depth</td>
<td>Better alignment of myoblasts compared to osteoblasts on groove features. Enhanced alignment on microgrooves were cell specific [82].</td>
</tr>
<tr>
<td></td>
<td>Transfected human corneal epithelial cells</td>
<td>Silicon</td>
<td>0.2–2 µm width 0.4 µm depth</td>
<td>Elongation and cytoskeletal orientation along the grooves [77].</td>
</tr>
<tr>
<td></td>
<td>BHK, MDCK, chick embryo cerebral neurons</td>
<td>PMMA</td>
<td>2–12 µm width 0.2–1.9 µm depth</td>
<td>Alignment of all cell types enhanced with decreasing groove width and increasing groove depth [83].</td>
</tr>
<tr>
<td></td>
<td>Rat dermal fibroblasts</td>
<td>PS</td>
<td>1–20 µm width 0.5–5.4 µm depth</td>
<td>Orientation of the cells enhanced with increasing groove depth [85].</td>
</tr>
<tr>
<td></td>
<td>Rat dermal fibroblasts</td>
<td>PS, PLA, Ti, Silicone</td>
<td>1–10 µm width 0.5 µm depth</td>
<td>Best alignment on 1 µm-wide PLL grooves. Cells morphology changes based on the type of material used [84].</td>
</tr>
<tr>
<td></td>
<td>Rat PC-12 cells, chick sympathetic neurons</td>
<td>PLA</td>
<td>1, 2 µm width 150–215 nm depth</td>
<td>Guided neurite alignment and extension on grooved features [86].</td>
</tr>
<tr>
<td></td>
<td>Rat dermal fibroblasts</td>
<td>PDMS</td>
<td>2, 5, 10 µm width 0.5 µm depth</td>
<td>Enhanced alignment of cells on 2 and 5 µm grooves. Similar behavior on 10 µm grooves as to those on flat surfaces [92].</td>
</tr>
<tr>
<td></td>
<td>Rat dermal fibroblasts</td>
<td>PDMS</td>
<td>2, 5, 10 µm width 0.5 µm depth</td>
<td>Enhanced orientation of actin fibers and vinculin along 2 µm-wide grooves compared to 5 and 10 µm grooves [93].</td>
</tr>
<tr>
<td></td>
<td>Endothelial cells</td>
<td>PDMS</td>
<td>3.5 µm width 0.2–5 µm depth</td>
<td>Enhanced alignment of cells with increasing groove depth. Alignment of F-actin and vinculin along the grooves [90].</td>
</tr>
<tr>
<td></td>
<td>Human endothelial, fibroblast and smooth muscle cells</td>
<td>PDMS</td>
<td>2–10 µm width 0.05–0.2 µm depth</td>
<td>Enhanced alignment of all cell types with decreasing groove width and increasing groove depth [91].</td>
</tr>
<tr>
<td></td>
<td>C2C12 myoblasts</td>
<td>Poly-carbonate</td>
<td>5–75 µm width 5 µm depth</td>
<td>Enhanced cellular nuclear alignment along 10 µm groove features [87].</td>
</tr>
<tr>
<td></td>
<td>Bovine aortic endothelial cells</td>
<td>PGS</td>
<td>2–5 µm width 0.45 µm depth</td>
<td>Enhanced cellular alignment along 2 µm-wide patterns compared to 5 and 10 µm-wide grooves, and flat surfaces [88].</td>
</tr>
<tr>
<td></td>
<td>Endothelial cells</td>
<td>Olefin copolymer</td>
<td>1, 5 µm width 0.1–2 µm depth</td>
<td>Enhanced alignment and polarization of cells on 1 µm-width and 1 and 5 µm depth grooves compared to flat surfaces [89].</td>
</tr>
<tr>
<td>Pillars, posts</td>
<td>LRM55 astroglial cells</td>
<td>Silicon</td>
<td>0.5–2 µm diameter 1 µm depth</td>
<td>Majority of cells showed preferential adhesion to the top of the pillars. Highly polarized cytoskeleton on pillars [95].</td>
</tr>
<tr>
<td></td>
<td>NIH-3T3 fibroblasts</td>
<td>PS</td>
<td>10 µm diameter 2 µm depth</td>
<td>Branched morphology and stable FAs for cells that were cultured on pillars [96].</td>
</tr>
<tr>
<td></td>
<td>NIH-3T3 fibroblasts</td>
<td>PDMS</td>
<td>5–10 µm diameter 2–10 µm depth</td>
<td>Branched morphology of cells attached to the top of the pillars. Similar morphology on shorter pillar compared to 2D surfaces. Bi- to tripolar morphology on pillars widely spaced apart [97].</td>
</tr>
<tr>
<td></td>
<td>NIH-3T3 fibroblasts, HeLa, primary hepatocytes</td>
<td>PDMS</td>
<td>1.25–9 µm diameter 2.5 µm depth</td>
<td>Better attachment of cells on pillars with smaller diameter independent of the cell type [98].</td>
</tr>
</tbody>
</table>
made it possible to control the cellular microenvironment through modulating cell—cell and cell—substrate interactions, and create high-throughput systems to carry out parallel experiments [23].

Photolithography, a method in which light is used to generate structures on a surface, was among the first fabrication methods applied to the field of biology. This technique is widely used to generate rigid microstructures on inorganic materials such as silicon and silicon oxide [39,40]. In this technique, the substrate is spin-coated with a layer of light-sensitive polymer called photoresist (e.g. SU-8). The photoresist layer is selectively exposed to ultraviolet light through a mask layout that causes crosslinking, polymerization, or degradation of the exposed material. The pattern is then developed through various means which results in dissolution of selected areas. Using photolithography, two-dimensional (2D) or topography-containing substrates, as well as cell-encapsulated materials may be constructed with many different natural and synthetic polymers [41–43]. Due to light diffraction, the resolution of the irradiated patterns is approximately on the order of the wavelength of light used [39,40,44]. Therefore, smaller features can be generated through using particles with shorter wavelengths such as x-rays and electron beams (electron beam lithography). Photolithographic techniques have been widely used to create topographies such as grooves and wells for cell adhesion and migration analysis [45,46].

After photolithographic patterning, the areas of the substrate which are not covered by the photoresist layer can be etched isotropically or anisotropically using wet or dry chemical etching processes. Depending on the type of etchant and crystal orientation of silicon substrate, wet chemical etching usually results in isotropic features with curved surfaces or anisotropic features with v-shaped cross sections. On the other hand, dry etching processes, such as deep reactive ion etching (DRIE) and reactive ion etching (RIE) are mainly used to develop anisotropic microstructures with square cross sections and vertical sidewalls [47,48]. Recent reports have shown that it is possible to generate isotropic microstructures comprised of curved surfaces by varying the geometrical patterns of the mask layout and using DRIE. This fabrication approach, which is used to etch silicon to different depths using a single-etch step process, is based on the applicability of RIE lag and its dependence on the geometrical patterns of the mask layout [49,50].

Stereolithography and two-photon absorption lithography [51] are mask-less fabrication methods for creating 3D structures, particularly with desired topographies for tissue engineering applications [52,53]. In stereolithography, UV laser is used to polymerize photosensitive monomeric or polymeric resins within predefined regions. Hence, in this technique, a 2D pattern can be obtained, although 3D patterns are possible through a layer-by-layer approach [54]. In contrast, in two-photon absorption lithography, an ultrafast laser is focused on photocurable resins to produce 3D structures. The fabrication of a 3D structure is controlled by the movement of the focus via piezo stages or galvo-scanners [55]. While stereolithography and two-photon absorption lithography have not been extensively used to generate topographies for biological studies, thus far it has been used to create nerve guidance conduits [56], and it is expected to be more prominent in the future given its high degree of control over constructing 3D microenvironments for tissue engineering applications.

Soft lithography refers to a set of techniques, which use elastomeric polymers to develop patterns based on embossing, molding, and printing methods [57]. The major advantages of soft lithography techniques are their low cost, ease of use, high-throughput nature, and high accessibility to biologists, chemists, and materials scientists without the need for expensive clean room facilities. An original master is usually fabricated via photolithography or silicon etching. Subsequently, the master is used to emboss structures onto an elastomeric material. The patterned elastomer can then be used to create topographies via replica molding, micromolding in capillaries, microtransfer molding, and microfluidics [57–59]. Numerous studies have used replica molding to develop 3D topographies through casting or embossing polymeric replicas on the original master or elastomeric molds [60]. Both rigid and elastomeric molds may be used to replicate the polymeric materials [61]. Poly(dimethylsiloxane) (PDMS) is the most widely used material in soft lithography given its biocompatibility, permeability to oxygen and carbon dioxide, and transparency for

<table>
<thead>
<tr>
<th>Table 1 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate type</td>
</tr>
<tr>
<td>HSS8 human fibroblasts, MCF10A normal human breast epithelial, MDA-MB-231 metastatic breast cancer cells</td>
</tr>
<tr>
<td>MCF10A normal human breast epithelial, MDA-MB-231 metastatic breast cancer cells</td>
</tr>
</tbody>
</table>

optical imaging [62]. Soft lithography provides an approach to make features over large surface areas and with curved shapes, and overcomes the diffraction limitations of photolithography. This technique is typically used to fabricate micron-sized patterns. Its resolution can be less than 1 μm, limited primarily by loss of the mechanical integrity of the elastomer at smaller length scales [63]. In the biological sciences, soft lithography has been utilized to make various topographies to modulate cell behavior and study mechanobiology [28].

3. Cell adhesion and morphology

The majority of cells in the body are anchorage-dependent and necessitate adherence to the ECM or other cells to survive and function in a physiological manner [64]. Lack of adherence of these cells to substrates results in apoptosis, termed anoikis, and is an important consideration in cell transplantation therapies. In vitro, prior to cell attachment, an interfacial layer of proteins or biomolecules from the cell culture media (e.g., serum components) is formed from their adsorption onto the substrate’s surface that subsequently influences cell attachment. A number of cellular structures are involved in the probing and sensing of the microenvironment and dictate cell attachment and morphogenesis. These include integrins in cell-ECM contact [65], cadherins in cell–cell adhesion [66], stretch-sensitive ion channels [67], Tyr kinase receptors [68], and G protein-coupled receptors [18]. In the cell-ECM interplay, integrins are part of a larger supramolecular complex, known as focal adhesion (FA), that link the ECM to intracellular components. The integrin-mediated mechanotransduction occurs through a series of intracellular molecular pathways and amplifications that lead to cytoskeletal changes [17,20]. For instance, increased local tension results in the clustering of integrins and phosphorylation of FA kinases [69], followed by activation of small GTPases of the Rho-family, such as RhoA. RhoA and its effector RhoA kinase (ROCK) are known to be involved in actin remodeling and modulation of transcription factors and gene expression [20,70]. Integrins also transmit ECM signals more directly through its physical connection with the actin filaments of the cell [71,72]. Substrate topography, imparted by ECM or microfabricated substrates, influences the organization, arrangement, and distribution of integrins. Upon integrin engagement with the underlying substrate, through a series of intracellular signaling cascades involving FA complexes and cytoskeletal filaments, cells start to spread and sense the topographical features of the underlying substrate [73,74]. This ultimately alters the cytoskeletal organization and force balance, which in turn changes cell morphology and cell function [75].

To date, a large body of the literature has focused on the role of microscale topographies in regulating cell adhesion and morphology. Microscale grooves are among the most common fabricated topographical features that have been employed to control these aspects of cell behavior. The materials used to fabricate grooved topographical features to investigate cell–substrate interactions include quartz [76], silicon [77], titanium-coated silicon [78–81], hydroxyapatite (HA)-coated silicon [82], poly(methyl methacrylate) (PMMA) [83], poly(lactic) (PLA), poly(styrene) (PS) [84–86], polycarbonate [87], poly(glycerol-sebacate) (PGS) [88], olefin copolymers [89], and silicone/PDMS [90,91]. Grooved features are typically arranged in repeating patterns with equal groove and ridge widths and set groove depth. The majority of cell types cultured on these topographies align along the major axis of grooves, with their alignment and orientation enhanced on decreasing groove width and increasing groove depth [76–93]. Coupled with an elongated morphology, cytoskeletal elements such as actin fibers and microtubules display a directional organization parallel to the grooves’ long axis [77–79,90,93]. In addition, alignment and localization of the FA complexes has been shown to be directly correlated with the cytoskeletal organization of cell [94]. For instance, early studies by Oakley and Brunette showed the alignment and cytoskeletal organization of human gingival fibroblasts on 1–30 μm-wide grooved titanium substrates [78,79]. In these studies, it was confirmed that microtubules were the first cytoskeletal component to orient along the direction of grooves, followed by actin fibers. In another work, Langer and colleagues developed parallel grooved-topographies with rounded edges on PGS substrates using replica molding to address contact guidance of bovine aortic endothelial cells for potential tissue engineering applications (Fig. 2a,b) [88]. The wavelength of the features was varied between 2 and 5 μm, while the depth was 0.45 μm. Their finding demonstrated that cells on microstructures with a smaller pitch size exhibited spindle-like morphology, a higher frequency of alignment, and a greater cell shape index compared to flat surfaces. In a recent study, nanoimprint lithography was used to fabricate grooved features in olefin copolymers to study endothelial cell organization and alignment for potential application in designing implantable biomaterials. The ridge width was selected to be 1 or 5 μm, while the groove depth was varied from 0.1 to 2 μm. This study confirmed endothelial cells polarization along the grooves and significantly enhanced alignment on deeper grooves. Furthermore, it was illustrated that FA kinase mediates cell spreading, while cell alignment is dependent on ROCK1/2, myosin—II mediated cell contractility, and FA maturation [89].

Subsequent works on cell–substrate interactions have focused on investigating cell morphology and adhesion on other types of topographical features including pillars [95–99], wells [100], pits [101,102], pyramidal-shaped microstructures [103], and isotropically-etched cavities with curved surfaces [104–108]. For instance, Turner et al. investigated the attachment of astroglial cells on microarrays of pillars for designing implantable neural devices [95]. The substrates were fabricated with silicon using photolithography and wet chemical etching. The width and spacing of the pillars was varied between 0.5–2 μm and 1–5 μm, respectively, and the height was 1 μm. Astroglial cells cultured on pillar geometries showed a significant tendency to adhere and exhibit highly polarized actin filaments and vinculin, a constituent of the FA complex. Studies by Frey et al. and Ghibaudo et al. demonstrated a branched morphology and FA stabilization in fibroblasts cultured on PS and PDMS pillars, respectively, both fabricated with soft lithographic techniques (Fig. 2c) [96,97]. The dimensions of the pillars, such as height and spacing, were shown to influence the cells’ morphology and spreading. Decreasing pillar height led to cells exhibiting morphologies similar to being cultured on flat surfaces [97]. In another study, increasing the gap size between pillars was shown to significantly affect the morphology of fibroblasts, in which they adopted a more stellate-like shape accompanied by diffuse actin fibers and fewer FAs (Fig. 2d) [99]. On the other hand, for smaller gap sizes, the cell morphology was more similar to those on flat surfaces. Nikkhhah et al. introduced the development of 3D isotropically-etched microstructures comprised of curved surfaces fabricated with silicon to study the adhesion and cytoskeletal organization of human fibroblasts, breast epithelial cells, and highly metastatic breast cancer cells (Fig. 2e–h) [104–108]. The depth of the etched microstructures varied between 60 and 70 μm and the width was in the range of 150–170 μm. Differential adhesion patterns of cells within the etched cavities were demonstrated; fibroblasts stretched, while the breast epithelial and metastatic breast cancer cells adopted the shape of the curved surfaces of the etched microstructures [104–106]. Further investigation confirmed that the cytoskeletal organization and biomechanical properties of the cells, as well as cell–cell junctions dictate the adhesion pattern.
Moreover, treatment of the breast cancer cells within the etched cavities with anti-cancer drugs induced a stretched morphology similar to the fibroblasts [107]. In co-culture of normal and cancerous breast epithelial cells, both cells adopted the shape of cavities. However, after anti-cancer drug treatment, only the breast epithelial cancer cells stretched [108].

While the previous studies illustrate the influence of substrate topography on cell morphology and adhesion, the response of cells to microscale topographies is highly dependent on the cell type, in addition to the geometry and dimension of the substrate's topography (Fig. 2i,j). Further comprehensive studies need to be undertaken in the future to better elucidate the biological mechanism governing a cell’s morphological response to substrate topography.
4. Cell migration

Efficient migration requires an asymmetric cell morphology consisting of a leading and a trailing edge. Cell migration is intimately connected to the biochemical and biophysical cues present in the microenvironment. Persistently directional migration requires a motogen—a signal that activates a cell’s internal motility machinery—along with an asymmetric external cue that guides the direction of movement [21]. The external cue may consist of soluble signals (chemotaxis) [109], tethered adhesion molecules (haptotaxis), substrate stiffness (dura(taxis)), and an electrical field (electrotaxis). In general, it is understood that in these environments, cells migrate by exhibiting asymmetry with a leading protrusion rich in actin (lamellipodium), integrin-mediated attachment to adhesion molecules, and detachment of the trailing edge of the cell [110]. ECM topography is one of the many factors that can influence the orientation of cell migration. It is possible that the physical structure and geometry of the ECM restrict sites of adhesion and directs migration through contact guidance [21]. For instance, in breast cancer metastasis, collagen fibers that are radiating outward from the mammary glands are known to mediate the directional migration of highly tumorigenic cells into the surrounding tissue [111–113]. Although, there remains much work in understanding the intracellular molecular pathways involved, small GTPases of the Rho-family [114] and stabilization of actin filaments [115] at the leading edge of the cell are critical elements during migration. The increasing utilization of microfabrication techniques in the construction of substrates with unique topographies may yield answers to the underlying mechanisms behind cell migration. Microfabricated substrates with asymmetric topographies have been used to recapitulate the directional migration of cells mediated by ECM topography. Given that cell motility is of crucial importance in processes such as morphogenesis [14,116], embryonic development [117], wound healing [118], and cancer metastasis [119,120], discovering the regulatory effects of topography on migration will enable better understanding of the mechanisms behind these physiological and pathological states.

Many cell types including fibroblasts [91,121–125], oligodendrocytes [126], neurons [127], epithelial [128], endothelial [91,129], and smooth muscle cells [91] have been shown to migrate along grooved topography. It has been shown that the average migration speed of cells is higher on microgrooved substrates than on flat surfaces [123,124,128,129]. For instance, Doyle et al. fabricated fibrillar patterns of different widths through photobleaching of a poly(vinyl alcohol)-coated glass substrate to imitate the fibrillar structure of the ECM [130]. Fibroblasts and human keratinocytes cultured on 1.5 μm-wide fibrillar patterns demonstrated a uniaxial phenotype, 2–3-fold higher migration speeds, and efficient cell leading edge protrusion and trailing edge retraction compared to flat, unpatterned substrates. Furthermore, among patterns with widths in the range of 1–40 μm, the highest migration speed was observed along 2.5 μm-wide lanes. In general, cells cultured on grooved-topographies exhibit a higher migration speeds on narrower grooves [129]. In groove microtopographies, ridge width has also been shown to affect cell migration velocity. In one study, groove topographies were micromachined from a titanium alloy (Ti4Al6V) with groove, ridge, and depth dimensions ranging from 5 to 30 μm [123]. Fibroblasts seeded on these substrates demonstrated oriented cell morphology parallel to the ridges’ long axis and highest migration velocity on 5 μm-wide ridges.

Recent generations of substrate topographies have attempted to fabricate more biomimetic features for cell migration analysis. Whereas groove topography examines the presentation of cues in a unidirectional manner, lattice topography better simulates the in vivo microenvironment by presenting multi-directional cues. Cells cultured on lattices differentially elongate and migrate along the direction of the long side of rectangular grids, compared to square ones [131]. The effect is greater for lattices with higher lattice aspect ratio and when the grid size is smaller than the size of each individual cell [132]. Furthermore, there is an explicable link between these observations and the actomyosin machinery. In these lattice topographies, cells treated with a myosin II inhibitor, blebbistatin, lost their exquisite sensitivity to the underlying topography and simply extruded multiple, randomly-oriented protrusions [131]. Further studies have attempted to mimic the complexity of the structures exhibited by the ECM. Kim et al. designed 1.5 μm-wide poly(urethane acrylate) lattice micro-patterns via UV-assisted capillary force lithography, with variable density and anisotropy, to guide migration and orientation of fibroblasts in a spatially directed manner (Fig. 2k) [133]. Fibroblasts preferentially migrated and with increased speeds along the higher anisotropy and toward the denser regions of the topographical features. The assembly of cells in a spatially-oriented fashion using the abovementioned microtopographies could be used to construct oriented cell monolayers for cell sheet tissue engineering [134].

One of the reasons for the failure of implanted biomedical devices is due to inflammatory and epithelial cell migration on the device. Hence, it is desirable to modify the surface of these devices to impede cell migration. While various surface chemistry methods have been explored for this purpose, topographical modifications have recently come into the spotlight. Using adjacent silicon dioxide flat and microgrooved surfaces fabricated via photolithography and DRIE, black tetra epidermal keratocytes were repelled from or allowed to traverse the microgrooves based on the groove width and the angle of approach of the cells toward the feature boundary [135,136].

Pillar topographies have also attracted significant attention to provide insight mechanisms of cell migration [96,97,121,137]. Spatial organization and dimensions of pillars have been shown to affect the migrational behavior of cells [96,97,138]. For instance, fibroblasts were shown to follow zig-zag patterns with higher speeds and turn frequencies on 10 μm-diameter, 1.7 μm-high polystyrene pillars compared to flat surfaces. Stable FAs, FA kinases, and contractile forces generated by myosin II were the major mechanisms dictating the cell response on these micropillar features [96]. Cell migration has also been preferentially directed along the axis of greatest rigidity or increasing substrate stiffness. For instance, micropillars of oval cross-section exhibit stiffer properties along their major axis compared to minor axis, thereby creating a mechanically-anisotropic structure [137]. When Madin–Darby canine kidney epithelial cells were cultured on these substrates, migration was directed parallel to the direction of the long axis of the ovals. In another work, a micropillar array with an increasing stiffness gradient was constructed by increasing the diameter of each pillar across the array [138]. Bovine aortic endothelial cells migrated preferentially toward the stiffer micropillars. The previous examples demonstrate an in vitro model for the role of mechanical stiffness in guiding cell migration (dura(taxis)) [139].

One principal advantage of studying cell migration at the microscale level is to recognize the fundamental mechanisms of multicellular migration [7,17,28]. In vivo, many cell types do not migrate alone, but as a collective group, resulting in organized sheets or 3D cellular clusters [11]. Though the effects of topography on collective migration have been established, the dominant mechanism has yet to be identified. To understand this mechanism, it has become essential to integrate topographical features and cellular mechanical response through physical cues. For example, microgrooved topographies enhanced epithelial and fibroblast tissue alignment and migration speeds compared to flat surfaces [124,128]. Furthermore, the effects of these substrates on tissue
alignment and migration speeds were similar to the corresponding single cell behaviors.

5. Stem cell differentiation

There has been a remarkable growth in using embryonic and adult stem cells in tissue engineering given their self-renewal and differentiation capacities [140–143]. However, the inability to precisely control stem cell fate has been a limitation in realizing the therapeutic potential of these cells [144–146]. The in vivo microenvironment of stem cells contains highly dynamic and intricate biochemical and biophysical cues, each playing their own role or in combination to regulate stem cell renewal and differentiation [147–151]. Therefore, establishing an environment that mimics key features of the stem cell niche is essential to the study and modulation of specific cellular processes. Development of in vitro topographical cues provides a rapid and inexpensive alternative to better recapitulate the in vivo microenvironment and guide stem cell differentiation [87,152–157]. For instance, in a study by Seo et al., enhanced osteogenic differentiation of mesenchymal stem cells (MSCs) was observed on geometrically ordered lattice micropatterns [158]. An interval pattern of 3 μm showed significant upregulation of alkaline phosphatase after 6 days and type-I collagen and osteocalcin after 12 days, compared to flat surfaces. However, the interval range of 4–8 μm resulted in downregulation of osteogenic markers. Further investigations demonstrated that MSCs cultured on lattice topography showed enhanced FA maturation, actin cytoskeletal organization, and FA kinase phosphorylation through the ROCK-myosin II pathway, elucidating the biological mechanism that directs topography-mediated cellular differentiation [159]. In another study, neural stem cells (NSCs) were grown on different topographies in order to understand their influence on differentiation [160]. NSCs cultured on chitosan films (flat surface) preferentially differentiated into astrocytes, whereas those cultured on multi-tubule conduit structures (30–90 μm in diameter) showed a ~6.5-fold higher β-III tubulin-positive cells compared to the films, indicating greater neuronal differentiation. Patterened micropillars with configurable heights and constant diameter have also been used to manipulate the mechanical regulation of human MSC differentiation (Fig. 3a) [151,156]. Varying the height of these posts changes their mechanical stiffness, with increasing height leading to decreased stiffness. Human MSCs grown on shorter microposts (0.97 μm), showed spread morphology, highly organized actin morphology, large FAs, and enhanced osteogenic markers. Conversely, human MSCs cultured on taller microposts (12.9 μm), exhibited round morphology,

![Image](image_url)

Fig. 3. Influence of topographical features on regulating stem cell fate. (a) The effect of stiffness on MSC morphology and differentiation using PDMS micropillars of varying heights as shown in these SEM images [151,156]. Scale bars, 50 μm (bottom left), 30 μm (bottom middle), 10 μm (bottom right). Adapted with permission from Macmillan Publishers Ltd: [Nature Protocols], copyright (2011). Adapted with permission from Macmillan Publishers Ltd: [Nature Methods], copyright (2010). (b) Formation of embryoid bodies (EBs) in poly(ethylene glycol) (PEG) hydrogel microwell arrays [162]. (bi) SEM images of uniform PEG microwell arrays with differing diameters (left = 150 μm, middle = 300 μm, right = 450 μm). (bii) Fluorescent images of EBs formed within the microwells after 7 days. (Calcein-AM — green, ethidium homodimer — red). Copyright (2008) National Academy of sciences, USA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
disorganized actin filaments, small FAs, and formation of lipid droplets, indicating adipogenesis. Similarly, PDMS microgrooves of different widths were used to investigate the differentiation capacity of umbilical cord blood-derived MSCs (UCB-MSCs) [161]. UCB-MSCs grown on 1 μm-wide grooves showed significant upregulation of β-III tubulin, neuronal nuclear antigen (NeuN), and microtubule associated protein 2 (MAP2) compared to wider grooves (2–4 μm widths) and flat surfaces, demonstrating that narrower grooves increase neuronal cell differentiation. Interestingly, UCB-MSCs on 1 μm grooves showed increased calcium levels in response to exogenous addition of potassium chloride, a characteristic response of mature neurons.

Recapitulation of the early steps of embryogenesis in vitro is commonly induced by the formation of 3D embryonic stem cell aggregates, called embryoid bodies (EBs). Microwells have become a common type of topography for generating EBs through favoring aggregation of ESCs [154,162–167]. In a work by Hwang et al., ESCs were seeded on poly(ethylene glycol) microwells with different diameters to study the size-dependent response of EBs on differentiation (Fig. 3b) [162]. The study demonstrated that EBs grown in larger microwells (450 μm diameter), exhibited preferential differentiation toward cardiogenesis through the expression of WT1. Conversely, EBs grown in smaller microwells (150 μm diameter) favored vascularization, mediated through Wnt5a expression. Additionally, other studies have demonstrated that microwell topographies are biomimetic microarchitectures in that they resemble the intestinal crypts. When Caco-2 cells, a type of epithelial cell, were cultured on smaller microwells exhibited higher alkaline phosphatase activity compared to larger microwells, indicating enhanced differentiation toward intestinal epithelial cells [100].

Microtopographical cues allow for the precise control of physical stimuli for systematic differentiation of stem cells. In addition, such topographies enable improved understanding of how stem cells respond to physical stimulation. Topographies for the study of physical cues provided by cell-substratum and cell-cell contacts. These can be used to quantify the force, F, applied by the cell, as described by:

$$F = k \cdot \Delta x = \left( \frac{3}{4} \pi E r^4 \right) \Delta x$$

where $F$ is the Young's modulus, and $r$ and $L$ are the radius and height of each pillar, respectively (Fig. 4a) [178]. Micropillar arrays can be used to measure traction forces mediated through the FAs of a cell (Fig. 4b). The size of the FAs has been shown to be directly correlated with the traction force applied, when FA area is >1 μm² [177,179]. Further, the interdependency of FAs, cell morphology, and generated forces has been illustrated on micropillar arrays. Cells that were restricted from spreading, by controlling the area of cell adhesion on the arrays, did not contract in response to lysophosphatidic acid, a stimulant of actin-myosin contraction; however, contraction in unspread cells was rescued when they were transfected with constitutively active RhoA [177]. Mechanics of cell spreading can also be studied by widening the spacing between micropillars and allowing cell adhesion between them. In this environment, cells spread around the pillars and gradually apply increasing force on the pillars that they are in contact with, which was shown to be reversible with a myosin II inhibitor [180]. On flat PDMS surfaces, cells exhibited more actin stress fibers; however, in the 3D micropatterned environment, actin stress fibers were located to the parts of the cell surrounding the pillars. While micropillars are one way of inducing cells to apply differing traction forces, another method involves hydrogels with varying stiffness. However, the drawback is that the process of fabricating materials of varying stiffness results in the alteration of their other bulk material properties, such as porosity, ligand density, and wettability [156]. With micropillars, stiffness is decoupled from these other material properties that might influence cell behavior.

The transduction of mechanical forces not only involves FAs in cell-substratum interactions, but also adherens junctions (AJ). AJ are protein complexes connecting one cell to another, and are linked to the actin-myosin cytoskeletal machinery. AJ are comprised of transmembrane proteins called cadherins, of which E-cadherin and N-cadherin have been well studied [181]. Mechanics in cell–cell contact plays an important role in embryo development and tissue morphogenesis [182,183]. For instance, it has been shown that epithelial sheet invagination occurs via the pulse contractions of actin and myosin underlying AJ [182]. Micropillars can be used to quantify the mechanical forces exerted by cells onto their neighboring cells. This can be accomplished in two ways. One is by the immobilization of cadherin molecules onto the top of the micropillar arrays. Using this method, Ganz et al. showed traction forces were greatest at the cell edges, directed toward the center of the cell, and similar in magnitude to those exerted by FAs [184]. In the second method,
Liu et al. used a fibronectin-micropatterned pillars that permitted only a single contact between two cells, to measure the force exerted by one cell onto another, called the “tugging force” (Fig. 4c) [185]. At the quasi—static equilibrium state, the cells are assumed to be stationary, and hence the net force on a cell body is zero. This means that for an isolated stationary cell on a micropillar array, the net vector sum of the traction forces has to equal zero. However, a cell that is in contact with only a single cell on a micropillar array experiences not only traction forces, but also intercellular “tugging force” from its neighboring cell. Therefore, the vector sum of the traction forces and “tugging force” has to equal zero. The “tugging force” can then be derived, since traction forces can be calculated from pillar deflections. In the study, the size of AJ was directly correlated with the magnitude of the intercellular “tugging force” and was mediated by Rac pathway and actomyosin contractility.

While in the aforementioned examples internal cellular forces were measured, selective and precise application of external force on cells have been made possible with micropillar actuators. In this way, simultaneous monitoring of internal and external forces was accomplished. Application of an external force resulted in an increase in FAs at only the actuated posts, and a non-uniform loss of traction forces at the other areas of the cell [188]. These results demonstrate the interplay between external and internal forces, and suggest that cell response to external mechanical forces may adjust their internally generated forces.

In addition to studying the amount of force generated by cells on their substrate and adjacent cells, and applying forces onto cells, micropillars have also been used to measure the effect of mechanical forces on cell proliferation within multicellular aggregates (Fig. 4d) [174], platelet contractile forces during thrombus formation [189], forces generated by endothelial cells during leukocyte adhesion and transmigration [190], and studying traction forces generated by epithelial monolayers [191]. Furthermore, the geometry and dimension of the microposts can be altered to obtain substrates with anisotropic or varying stiffness to affect cell migration [138] and stem cell differentiation as previously mentioned.

7. Application of microtopography in tissue engineering

Microfabrication technologies have been proven to be powerful techniques in addressing the current challenges in tissue engineering [38]. To date, microfabrication technologies have been widely used in the development of substrates, scaffolds, or biomaterials comprised of precise topographical features to meet the desired criteria and complexity of the native tissue architecture. In the following sections, we will cover the application of microscale topographies in neural, cardiac and musculoskeletal tissue engineering fields.

7.1. Neural tissue engineering

In the developing nervous system, there exists a dynamic and highly organized histogenesis, whereby neurons have to forge specific connections to other neurons via their cellular projections (i.e. neurites including dendrites and axons), to generate the correct cellular circuitry [192]. The precise cellular migration and axon guidance are mediated through biochemical and biophysical cues present in the cell’s microenvironment. For instance, neurons can sense and migrate along directed ECM fibers or glial cell tracts [193]. The sensitivity of neurons to the physical or topographical cues in their environment has been exploited both in vitro and in vivo for tissue engineering purposes [27,194]. In vitro, microtopographical cues, such as grooves or pillars, have been developed...
to guide and direct cellular behaviors such as neuronal cell and nuclear alignments, and axon guidance. Such cell culture platforms are not only beneficial in the development of models for nervous system biology, but also in creating therapeutic approaches for nerve injuries.

The in vitro studies of the effect of microtopography on neurons have consisted of using anisotropic or isotropic features, and quantifying cell or neurite alignments with the goal of directing neurite extension. Microgrooves of varying heights (2.5–69 μm), widths (5–350 μm), and spacings (20–60 μm) have been widely used in this context. In general, there is a greater degree of neurite alignment in deeper, narrower, and less spaced apart microgrooves [195–198]. Functionalization of these topographies with biomolecules, such as laminin or nerve growth factor [199], further enhances their effects on cell and neurite alignments. In work by Kang et al. embryonic neurons seeded on laminin-coated grooved fibers induced a higher degree of neurite extension compared to smooth fibers (Fig. 5a) [200]. In the study, the fibers were

![Diagram of microgrooves and neurite alignment](image)

**Fig. 5.** (a) Topographical approaches to neural tissue engineering. (ai) Neurite alignment and extension of embryonic neurons is enhanced on grooved fibers compared to smooth fibers [200]. Shown are the schematic of the alginate hydrogel microfiber generation (top left), SEM image of the microfibers (bottom left), and fluorescent image of neurons seeded on smooth (middle) and grooved (right) microfibers (green, neurofilament; blue, nucleus). Scale bars, 20 μm (ai bottom left), 50 μm (ai right). (a(ii) Agarose conduits containing multiple microscale channels (top) and Nissl staining (bottom) showing the growth of cells within channels (designated C) surrounded by the scaffold walls (designated W) [233]. Scale bars, 200 μm (aii top), 100 μm (aii bottom). Adapted with permission from Elsevier: [Biomaterials], copyright (2010). (b) Spatial arrangement of cardiomyocytes cultured on flat and grooved cantilevers [217]. (bi) Environmental SEM images of microcantilever structures with both flat and grooved surfaces. (bii) Morphological characteristics of cardiomyocytes visualized by actin (red) staining on flat (top) and grooved (bottom) microcantilevers. Adapted with permission from Elsevier: [Journal of Biomechanics], copyright (2008). (c) PCS honeycomb-shaped scaffold designed to closely mimic the mechanical properties of native myocardium [219]. (ci) SEM image of the scaffold. Scale bar, 200 μm. (cii) Rat cardiac cells cultured for 1 week on a honeycomb scaffold, showing cytoskeletal alignment (F-actin = green, nuclei = blue). The white asterisk indicates scaffold. Scale bar, 200 μm. Adapted with permission from Macmillan Publishers Ltd: [Nature Materials], copyright (2008). (d) Influence of microgroove topography on osteoblast shape and orientation [223]. Fluorescent images of osteoblasts cultured on flat hydroxyapatite (di) and 40 μm-wide grooved hydroxyapatite surfaces (dii) shown by phalloidin (green), collagen type-I (red), and DNA staining. Adapted with permission from Elsevier: [Acta Biomaterialia] copyright (2012). (e) 3D structure of woven poly(glycolic acid) yarn for generating a biomimetic scaffold for cartilage tissue engineering [228]. (ei) SEM images of fiber structures of the 3D woven composite scaffold. (eii) Calcein-AM stained porcine articular chondrocytes seeded on the construct. Adapted with permission from Macmillan Publishers Ltd: [Nature Materials], copyright (2007). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
generated through flowing alginate through a grooved PDMS channel with concomitant flow of calcium chloride as the cross-linking agent. Moreover, higher order structures can be formed by first culturing and aligning support cells on microgrooves, followed by seeding of neurons. In this regard, nerve growth factor-secreting cells [201], astrocytes [202], or Schwann cells [203], have been used as an intermediate layer between the topographical substrate and neurons, to induce neurite alignment or growth, or neuronal differentiation.

The control of the alignment of neurites and their growth in a desired direction is of particular interest in nervous system traumas, such as spinal cord injuries (SCI) [204,205]. In SCI, the injured axons encounter an inhibitory environment for growth that restricts their ability to make synapses with previously connected cells [206]. Hence, topographical guidance through nerve conduits has been one of the mainstream therapeutic interventions after SCI (Fig. 5aii). It is postulated that cells sense the curvature of these conduits as a form of a topographical cue. Engineering methods have been used to add topographical features inside these conduits in the hope of increasing permissive or inductive neurite guidance to promote nerve regeneration. These methods include fabricating conduits containing micrometer-sized channels or microgrooves within the lumen. Multi-channel conduits, for example, have garnered increasing attention given that they increase the surface area for cell attachment, as well as enable an enhancement in the release of growth factors from the scaffold. Poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone have been widely used as the choice of material given their ease of processing and biocompatibility. Furthermore, these synthetic materials allow for control over their architecture, porosity, and degradation rate [207,208]. In work by Krych et al., PLGA scaffolds containing multiple, parallel channels of either 450 μm- or 600 μm-diameter seeded with Schwann cells were implanted in the area of the transected spinal cord of an adult rat [209]. Scaffolds containing smaller diameter channels promoted greater nerve regeneration compared to the larger diameter channels. Similarly, Rutkowski et al. showed that the introduction of microgrooves in poly(D,L-lactic acid) conduits seeded with Schwann cells resulted in a more expeditious functional recovery in rats with transected sciotic nerves, compared to conduits without a microtopography [210]. These examples demonstrate the advantageous role of microtopography in engineered tissue engineered scaffolds and pave the way toward advancements in the field of nerve regeneration.

7.2. Cardiac tissue engineering

The native myocardial architecture embodies cellular alignment and organization which is closely linked to its proper functioning in vivo [211]. Microengineering of cardiac constructs aims to mimic the native cardiac tissue organization in an in vitro setting [35]. Precise control of biophysical environments has been widely utilized to recapitulate the native anisotropic structure of the myocardium and direct its behavior [211,212]. Studies have shown that topographical guidance can induce cardiomyocytes to resemble the in vivo phenotype and exhibit enhanced contractile activity [213–215].

In cardiac tissues, contractile properties are directly related to cellular orientation and elongation. Therefore, many studies have aimed to simulate the in vivo anisotropic structure of the myocardium through a series of topographical features with controllable mechanical properties. For example, Bursac et al. fabricated microabraded channels, 0.5–5 μm-wide and 0.2–2 μm in depth, on a poly(vinyl) chloride substrate that enabled cardiomyocyte alignment and resulted in an anisotropic structure [212]. Cardiomyocytes cultured on these microabrasions exhibited faster propagation of action potential along the long axis of abstractions.

Furthermore, on these substrates, cells assembled into tissues exhibiting aligned actin fibers, parallel sarcomeric arrangements, and nuclear elongation, phenotypically mimicking the native in vivo structure. In another study by Yin et al. cardiomyocytes seeded on microgrooved substrates were shown to modify intracellular calcium behavior [216]. Cardiomyocytes cultured on microgrooved patterns exhibited increased systolic intracellular calcium and slower diastolic rise in calcium. Moreover, electrical stimulation led to increased systolic intracellular calcium at all stimulation frequencies and increased diastolic intracellular calcium at higher stimulation frequencies. These results demonstrate the effect of substrate changes on cardiomyocyte intracellular calcium dynamics and a possible model for cardiac arrhythmia. In another work, Kim et al. developed an analytical platform for measuring contractile forces generated by cardiomyocytes cultured on flat and 10 μm-wide grooved cantilevers (Fig. 5b) [217]. Cardiomyocytes cultured on the cantilevers showed 3D aggregation accompanied with anisotropic actin organization and nuclear elongation. Furthermore, cardiomyocytes on grooved cantilevers had 65–85% higher contractile forces, compared to flat cantilevers, as measured through displacement of the cantilevers during contractions.

Topography has also been implemented in designing fully synchronous cardiac tissue constructs through gap junction formations and establishing interconnected networks of cardiomyocytes. In one study, cardiomyocytes grown on PDMS micropeg topographies of various dimensions and spacings were analyzed for junctional marker expressions [218]. The patterned topographies supported adhesion and growth of cardiomyocytes and a consistent contractile frequency across all micropeg configurations. Furthermore, dense and clustered micropeg arrangements showed significant upregulation of N-cadherin and connexin43—a gap junction protein crucial for synchronized contraction in cardiomyocytes—compared to sparse micropeg arrangements, revealing the influence of micropeg arrangements in propagation of electrical signaling and synchronous contractility of cardiac tissue constructs.

Engineered scaffolds have also shown a great promise in recapitulating the anisotropy and mechanical properties of the cardiac muscle tissues. For example, PGS scaffolds were constructed into an accordion-like honeycomb structure to obtain tensile properties similar to the ventricular myocardium (Fig. 5c) [219]. The anisotropic design of the scaffolds resulted in a lower cell shape index, exhibited by a significant increase in the degree of cardiomyocyte alignment when compared to an isotropic scaffold design. Furthermore, cardiomyocytes cultured on these scaffolds exhibited a directionally-dependent contractile behavior.

Understanding the characteristic morphology and cellular phenotype of cardiac cells and tissues directly influences the development of strategies to recapitulate the in vivo cellular environment. The phenotypic mimicry of cardiac muscles is coupled with increased contractile and electrical activity, allowing for more advanced cardiac tissue engineering platforms suitable toward clinical applications.

7.3. Musculoskeletal tissue engineering

Bones are highly vascularized tissues with an intrinsic capacity to remodel and self-heal. Currently, the gold standard for treating bone defects is through autologous bone grafts. However, this method has many disadvantages such as increased rates of infection, limited osteogenicity, and limited applicability to mild injuries [220]. These drawbacks have called for alternative treatment methods. One promising avenue is through engineering bone tissue
constructs that would require anisotropic mechanical properties, formation of oriented cells necessary for hierarchical organization, and mimicking the in vivo phenotype [221]. To fabricate such constructs, surface topography has been utilized to precisely control cellular orientation and alignment [80,222,223]. Kirmizidis et al. elucidated the role of surface topography as a modulator of primary osteoblast alignment by using microgroove patterns [224]. Osteoblasts grown on grooves of 7 μm depth and 10, 15, and 30 μm widths demonstrated predominant orientation along the grooves compared to flat surfaces. Moreover, osteoblasts grown on 10 μm-wide grooves formed multilayered structures validated by higher connexin43 gap junction size compared to flat surfaces. Further studies have confirmed that narrower microgrooves lead to an increase in cellular alignment of human osteoblasts [223]. Cellular orientation of osteoblasts between 0 and 15°—with zero degrees as the reference angle to the groove’s long axis—was 64–79% on 20 μm-wide channels, while on 100 μm-wide channels only 29–47% osteoblasts alignment was present (Fig. 5d) [223]. Though significant progress has been achieved in the field of bone tissue engineering, future studies are aimed at improving osteoblast integration in constructs to improve the success of bone implants.

Unlike bone, cartilage has a limited number of cells and is avascular. However, to its limited self-healing capacity and limited success of current clinical therapeutics, tissue engineering, future studies are aimed at improving osteoblast seeding on the oriented fibers of the scaffold exhibited a spatially uniform cellular distribution and rounded morphology, raising the possibility of using this construct for cartilage tissue formation [225].

A significant challenge of generating cartilage in vitro is mimicking its native structural and mechanical properties. In vivo, cartilage exhibits anisotropic and heterogeneous viscoelastic properties. Moutos et al. developed an anisotropic, 3D woven scaffold made out of 104 μm-diameter polyglycolic acid yarn that had similar compressive, tensile, and shear properties as that of native articular cartilage (Fig. 5e) [228]. Moreover, chondrocytes seeded on the oriented fibers of the scaffold exhibited a spatially uniform cellular distribution and rounded morphology, raising the possibility of using this construct for cartilage repair. Currently, topographical features are being fabricated to mimic the tissue’s native structural environment. Despite current progress, the field of musculoskeletal tissue engineering needs to make advancements toward emulating the overall physical characteristics of the native tissue to target repair and regeneration.

8. Conclusions and future prospects

Microfabrication technology has been proven to be a powerful tool to develop topographical features for mimicking the natural architecture of the ECM environment. Microscale topographical cues can be used to precisely control adhesion, morphology, migration, and differentiation in a wide variety of cell types ranging from fibroblasts to MSCs, as well as be applied to measure cell-generated forces. Considering that previous studies have produced a large body of knowledge and have provided valuable insight into manipulating cell behavior through cell–substrate interactions, there are still several challenges within this field, which need to be addressed in the future. Further studies are required to elucidate the underlying molecular mechanism responsible for modulating cell–substrate interactions. For example, it would be crucial to identify signal transduction pathways which originate from cell attachment sites and govern gene expression and ultimately cell behavior. These findings will significantly enhance our knowledge in defining a general trend describing how substrate topography influences the behavior across different cell types rather than just comparing studies conducted on specific cells. Although, the majority of the previous works in this field have used simple topographical features such as grooves, future attempts should be more focused on realistic substrates with higher degree of biomimetic relevance to impose multi-directional cues within the cellular microenvironment. Such novel substrates will enable addressing questions on how cells globally integrate biophysical signals from their surrounding microenvironment. Furthermore, topographical features can be integrated with chemical stimuli, such as soluble factors, to enhance cellular process such as stem cell differentiation.

The continuous advancements in the field of cell–substrate topography interactions will not only benefit fundamental biological studies, but it will have significant implications in the field of tissue engineering through engineering synthetic and implantable substrates with controlled features.

Conflict of interest

The authors declare no competing interests.

Acknowledgments

The authors acknowledge funding from the National Science Foundation CAREER Award (DMR 0847287), the office of Naval Research Young National Investigator Award, and the National Institutes of Health (HL092836, DE019024, EB012597, AR057837, DE021468, HL099073, EB008392).

References

Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions.

Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment.


Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions.


Schwarz MA, Ginsberg MH. Networks and crosstalk: integrin signalling to the cytoskeleton in SV40 human corneal epithelial cells cultured on nanogrooved quartz: in the cytoskeleton in SV40 human corneal epithelial cells cultured on nanogrooved quartz: in


Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions.


Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions.


